Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 62(1): 205-218, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33340324

RESUMO

Little has been established on the relationship between the mevalonate (MVA) pathway and other metabolic pathways except for the sterol and glucosinolate biosynthesis pathways. In the MVA pathway, 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to form 3-hydroxy-3-methylglutaryl-coenzyme A. Our previous studies had shown that, while the recombinant Brassica juncea HMGS1 (BjHMGS1) mutant S359A displayed 10-fold higher enzyme activity than wild-type (wt) BjHMGS1, transgenic tobacco overexpressing S359A (OE-S359A) exhibited higher sterol content, growth rate and seed yield than OE-wtBjHMGS1. Herein, untargeted proteomics and targeted metabolomics were employed to understand the phenotypic effects of HMGS overexpression in tobacco by examining which other metabolic pathways were affected. Sequential window acquisition of all theoretical mass spectra quantitative proteomics analysis on OE-wtBjHMGS1 and OE-S359A identified the misregulation of proteins in primary metabolism and cell wall modification, while some proteins related to photosynthesis and the tricarboxylic acid cycle were upregulated in OE-S359A. Metabolomic analysis indicated corresponding changes in carbohydrate, amino acid and fatty acid contents in HMGS-OEs, and F-244, a specific inhibitor of HMGS, was applied successfully on tobacco to confirm these observations. Finally, the crystal structure of acetyl-CoA-liganded S359A revealed that improved activity of S359A likely resulted from a loss in hydrogen bonding between Ser359 and acyl-CoA, which is evident in wtBjHMGS1. This work suggests that regulation of plant growth by HMGS can influence the central metabolic pathways. Furthermore, this study demonstrates that the application of the HMGS-specific inhibitor (F-244) in tobacco represents an effective approach for studying the HMGS/MVA pathway.


Assuntos
Hidroximetilglutaril-CoA Sintase/metabolismo , Redes e Vias Metabólicas , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Dimetil Sulfóxido/farmacologia , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ligação de Hidrogênio , Hidroximetilglutaril-CoA Sintase/antagonistas & inibidores , Hidroximetilglutaril-CoA Sintase/química , Lactonas/farmacologia , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Estrutura Terciária de Proteína , Nicotiana/enzimologia
2.
J Exp Bot ; 71(1): 272-289, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557302

RESUMO

3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyses the second step of the mevalonate (MVA) pathway. An HMGS inhibitor (F-244) has been reported to retard growth in wheat, tobacco, and Brassica juncea, but the mechanism remains unknown. Although the effects of HMGS on downstream isoprenoid metabolites have been extensively reported, not much is known on how it might affect non-isoprenoid metabolic pathways. Here, the mechanism of F-244-mediated inhibition of primary root growth in Arabidopsis and the relationship between HMGS and non-isoprenoid metabolic pathways were investigated by untargeted SWATH-MS quantitative proteomics, quantitative real-time PCR, and target metabolite analysis. Our results revealed that the inhibition of primary root growth caused by F-244 was a consequence of reduced stigmasterol, auxin, and cytokinin levels. Interestingly, proteomic analyses identified a relationship between HMGS and glucosinolate biosynthesis. Inhibition of HMGS activated glucosinolate biosynthesis, resulting from the induction of glucosinolate biosynthesis-related genes, suppression of sterol biosynthesis-related genes, and reduction in sterol levels. In contrast, HMGS overexpression inhibited glucosinolate biosynthesis, due to down-regulation of glucosinolate biosynthesis-related genes, up-regulation of sterol biosynthesis-related genes, and increase in sterol content. Thus, HMGS might represent a target for the manipulation of glucosinolate biosynthesis, given the regulatory relationship between HMGS in the MVA pathway and glucosinolate biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glucosinolatos/biossíntese , Hidroximetilglutaril-CoA Sintase/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidroximetilglutaril-CoA Sintase/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
3.
FASEB J ; 33(6): 7588-7602, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30892947

RESUMO

Blood-testis barrier (BTB) and apical ectoplasmic specialization (ES) serve as structural supports for germ cell (GC) development. We demonstrated that the Sertoli cell (SC)-specific coxsackievirus and adenovirus receptor (CXADR) knockout (SC-CXADR-/-), but not the GC-specific knockout, impaired spermatogenesis. An increase in GC apoptosis and premature loss of elongated spermatids were observed in SC-CXADR-/- testes. The BTB function was compromised in SC-CXADR-/- testes with dysregulation of oocludin and zonula occludens-1 expression at the basal compartment of the seminiferous epithelium. An integrated omics analyses confirmed that altered gene ontology terms identified in SC-CXADR-/- testes are highly associated with spermatid development and differentiation, spermatogenesis, and sperm motility and are considered as unique testicular function terms. Leptin, Nasp, Tektin3, Larp 7, and acrosin, which are highly associated with male fertility, were found to be down-regulated in SC-CXADR-/- testes. Based on the data from the omics analyses, we employed the CXADR-deficient SC model to further investigate the molecular mechanisms involved. We unraveled that SC-CXADRs are required for ß-catenin inactivation and cell division cycle protein 42 (Cdc42) activation, resulting in maintaining the integrity and function of the BTB and apical ES as well as inhibiting gene transcription, such as the Myc gene, in the testes. We demonstrated for the first time that CXADR is an important mediator governing ß-catenin and Cdc42 signaling that is essential for spermatogenesis. The molecular mechanisms identified herein may provide new insights to unravel the novel functions and signaling cascades of CXADR in other key CXADR-expressing tissues.-Huang, K., Ru, B., Zhang, Y., Chan, W.-L., Chow, S.-C., Zhang, J., Lo, C., Lui, W.-Y. Sertoli cell-specific coxsackievirus and adenovirus receptor knockout regulates cell adhesion and gene transcription via ß-catenin inactivation and Cdc42 activation.


Assuntos
Adenoviridae/metabolismo , Adesão Celular/fisiologia , Enterovirus/metabolismo , Receptores Virais/fisiologia , Transcrição Gênica/fisiologia , beta Catenina/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Barreira Hematotesticular/metabolismo , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Proteômica , Receptores Virais/genética , Epitélio Seminífero/citologia , Transdução de Sinais , Transcriptoma
4.
J Proteomics ; 187: 161-170, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048775

RESUMO

Nitrogen is an essential macronutrient for plant growth and crop productivity. The aim of this work was to further investigate the molecular events during plant adaptation to nitrogen stress. Here, we present a SWATH-MS (Sequential window acquisition of all theoretical mass spectra)-based quantitative approach to detect proteome changes in Arabidopsis seedlings following nitrogen starvation. In total, 736 proteins of diverse functions were determined to show significant abundance changes between nitrogen-supplied and nitrogen-starved Arabidopsis seedlings. Functional categorization revealed the involvement of nitrogen stress-responsive proteins in biological processes including amino acid and protein metabolism, photosynthesis, lipid metabolism and glucosinolate metabolism. Subsequent phospholipid profiling of Arabidopsis seedlings showed changes in phospholipid composition that may enhance membrane fluidity as a response to nitrogen starvation. Moreover, an Arabidopsis grf6 T-DNA insertion mutant was found to have a nitrogen stress-sensitive phenotype. GRF6 is a 14-3-3 protein with elevated abundance upon nitrogen starvation and it may function as a positive regulator during nitrogen stress adaptation.


Assuntos
Arabidopsis/metabolismo , Espectrometria de Massas/métodos , Nitrogênio/deficiência , Proteômica/métodos , Estresse Fisiológico/fisiologia , Adaptação Fisiológica/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fenótipo , Fotossíntese/fisiologia , Proteoma/análise , Proteoma/metabolismo , Plântula/metabolismo
5.
Plant Biotechnol J ; 15(11): 1387-1396, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28301718

RESUMO

The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/imunologia , Sorghum/genética , Triticum/genética , Basidiomycota/patogenicidade , Colletotrichum/patogenicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença/imunologia , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação , Doenças das Plantas/microbiologia , Folhas de Planta , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sesquiterpenos/metabolismo , Triticum/enzimologia , Triticum/imunologia , Triticum/metabolismo , Fitoalexinas
6.
J Proteome Res ; 15(10): 3528-3539, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27599093

RESUMO

Lead (Pb) pollution is a growing environment problem that continuously threatens the productivity of crops. To understand the molecular mechanisms of plant adaptation to Pb toxicity, we examined proteome changes in Arabidopsis seedlings following Pb treatment by SWATH-MS, a label-free quantitative proteomic platform. We identified and quantified the expression of 1719 proteins in water- and Pb-treated plants. Among them, 231 proteins showed significant abundance changes (151 elevated and 80 reduced) upon Pb exposure. Functional categorization revealed that most of the Pb-responsive proteins are involved in different metabolic processes. For example, down-regulation of photosynthesis and biosynthesis of isoprenoids and tetrapyrroles in chloroplasts were observed. On the contrary, pathways leading to glutathione, jasmonic acid (JA), glucosinolate (GSL), and phenylpropanoid production are up-regulated. Experimental characterizations demonstrated a rapid elevation of endogenic JA production in Pb-treated Arabidopsis seedlings, while a JA-deficient mutant and a JA-insensitive mutant showed hypersensitivity to root inhibition by Pb, implicating an essential role of JA during Pb responses. Consistently, methyl jasmonate supplementation alleviated Pb toxicity in the wild-type and JA-deficient mutant. Furthermore, GSL levels were substantially enhanced following Pb treatment, while such induction was not detected in the JA mutant, suggesting that the Pb-induced GSL accumulation is JA-dependent. Overall, our work represents the first SWATH-MS analysis in Arabidopsis and highlights a potential mediating role of JA during Pb stress.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Ciclopentanos/farmacologia , Chumbo/farmacologia , Oxilipinas/farmacologia , Proteômica/métodos , Adaptação Biológica/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Espectrometria de Massas , Proteoma/análise , Proteoma/efeitos dos fármacos , Plântula/fisiologia
7.
Front Plant Sci ; 7: 1926, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066479

RESUMO

Modern rice cultivars have large panicle but their yield potential is often not fully achieved due to poor grain-filling of late-flowering inferior spikelets (IS). Our earlier work suggested a broad transcriptional reprogramming during grain filling and showed a difference in gene expression between IS and earlier-flowering superior spikelets (SS). However, the links between the abundances of transcripts and their corresponding proteins are unclear. In this study, a SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) -based quantitative proteomic analysis has been applied to investigate SS and IS proteomes. A total of 304 proteins of widely differing functionality were observed to be differentially expressed between IS and SS. Detailed gene ontology analysis indicated that several biological processes including photosynthesis, protein metabolism, and energy metabolism are differentially regulated. Further correlation analysis revealed that abundances of most of the differentially expressed proteins are not correlated to the respective transcript levels, indicating that an extra layer of gene regulation which may exist during rice grain filling. Our findings raised an intriguing possibility that these candidate proteins may be crucial in determining the poor grain-filling of IS. Therefore, we hypothesize that the regulation of proteome changes not only occurs at the transcriptional, but also at the post-transcriptional level, during grain filling in rice.

8.
Plant Physiol ; 165(3): 1315-1327, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24843076

RESUMO

Flavones are a major class of flavonoids with a wide range of physiological functions in plants. They are constitutively accumulated as C-glycosides and O-linked conjugates in vegetative tissues of grasses. It has long been presumed that the two structural modifications of flavones occur through independent metabolic routes. Previously, we reported that cytochrome P450 93G2 (CYP93G2) functions as a flavanone 2-hydroxylase (F2H) that provides 2-hydroxyflavanones for C-glycosylation in rice (Oryza sativa). Flavone C-glycosides are subsequently formed by dehydratase activity on 2-hydroxyflavanone C-glycosides. On the other hand, O-linked modifications were proposed to proceed after the flavone nucleus is generated. In this study, we demonstrate that CYP93G1, the closest homolog of CYP93G2 in rice, is a bona fide flavone synthase II (FNSII) that catalyzes the direct conversion of flavanones to flavones. In recombinant enzyme assays, CYP93G1 desaturated naringenin and eriodictyol to apigenin and luteolin, respectively. Consistently, transgenic expression of CYP93G1 in Arabidopsis (Arabidopsis thaliana) resulted in the accumulation of different flavone O-glycosides, which are not naturally present in cruciferous plants. Metabolite analysis of a rice CYP93G1 insertion mutant further demonstrated the preferential depletion of tricin O-linked flavanolignans and glycosides. By contrast, redirection of metabolic flow to the biosynthesis of flavone C-glycosides was observed. Our findings established that CYP93G1 is a key branch point enzyme channeling flavanones to the biosynthesis of tricin O-linked conjugates in rice. Functional diversification of F2H and FNSII in the cytochrome P450 CYP93G subfamily may represent a lineage-specific event leading to the prevalent cooccurrence of flavone C- and O-linked derivatives in grasses today.

9.
Proteome Sci ; 12: 16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24628833

RESUMO

BACKGROUND: Selaginella (Selaginella moellendorffii) is a lycophyte which diverged from other vascular plants approximately 410 million years ago. As the first reported non-seed vascular plant genome, Selaginella genome data allow comparative analysis of genetic changes that may be associated with land plant evolution. Proteomics investigations on this lycophyte model have not been extensively reported. Phosphorylation represents the most common post-translational modifications and it is a ubiquitous regulatory mechanism controlling the functional expression of proteins inside living organisms. RESULTS: In this study, polyethylene glycol fractionation and immobilized metal ion affinity chromatography were employed to isolate phosphopeptides from wild-growing Selaginella. Using liquid chromatography-tandem mass spectrometry analysis, 1593 unique phosphopeptides spanning 1104 non-redundant phosphosites with confirmed localization on 716 phosphoproteins were identified. Analysis of the Selaginella dataset revealed features that are consistent with other plant phosphoproteomes, such as the relative proportions of phosphorylated Ser, Thr, and Tyr residues, the highest occurrence of phosphosites in the C-terminal regions of proteins, and the localization of phosphorylation events outside protein domains. In addition, a total of 97 highly conserved phosphosites in evolutionary conserved proteins were identified, indicating the conservation of phosphorylation-dependent regulatory mechanisms in phylogenetically distinct plant species. On the other hand, close examination of proteins involved in photosynthesis revealed phosphorylation events which may be unique to Selaginella evolution. Furthermore, phosphorylation motif analyses identified Pro-directed, acidic, and basic signatures which are recognized by typical protein kinases in plants. A group of Selaginella-specific phosphoproteins were found to be enriched in the Pro-directed motif class. CONCLUSIONS: Our work provides the first large-scale atlas of phosphoproteins in Selaginella which occupies a unique position in the evolution of terrestrial plants. Future research into the functional roles of Selaginella-specific phosphorylation events in photosynthesis and other processes may offer insight into the molecular mechanisms leading to the distinct evolution of lycophytes.

10.
Mol Biosyst ; 7(5): 1399-408, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21350782

RESUMO

Extensive front-end separation is usually required for complex samples in bottom-up proteomics to alleviate the problem of peptide undersampling. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-based experiments have particularly higher demands, in terms of the number of duty cycles and the sensitivity, to confidently quantify protein abundance. Strong cation exchange (SCX)/reverse phase (RP) liquid chromatography (LC) is currently used routinely to separate iTRAQ-labeled peptides because of its ability to simultaneously clean up the iTRAQ reagents and byproducts and provide first-dimension separation; nevertheless, the low resolution of SCX means that peptides can be redundantly sampled across fractions, leading to loss of usable duty cycles. In this study, we explored the combinatorial application of offline SCX fractionation with online RP-RP applied to iTRAQ-labeled chloroplast proteins to evaluate the effect of three-dimensional LC separation on the overall performance of the quantitative proteomics experiment. We found that the higher resolution of RP-RP can be harnessed to complement SCX-RP and increase the quality of protein identification and quantification, without significantly impacting instrument time and reproducibility.


Assuntos
Cromatografia por Troca Iônica/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Proteômica/métodos , Sequência de Aminoácidos , Proteínas de Arabidopsis/análise , Cátions , Cloroplastos/metabolismo , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Peptídeos/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...